首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
大气科学   4篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
根据强浓雾发生的同步性,可将安徽分为5个不同的区域。为了解安徽区域性强浓雾的演变规律及成因,首先利用1980—2019年安徽省68个资料完整的国家级气象观测站08时能见度、相对湿度和天气现象资料,探讨了各区域区域性强浓雾的判定标准,建立各区域40 a的区域性强浓雾日时序资料,分析了区域性强浓雾的年际和年代际变化趋势;然后利用2016—2019年77个国家级气象观测站逐时资料分析了不同区域区域性强浓雾的年变化、日变化及持续时间分布等特征;最后,探讨了冬季区域性强浓雾年际变化的成因。结果表明:(1)1980—2019年,沿淮淮北3个区域区域性强浓雾日数都有先升后降的变化趋势,转折点在2006/2007年;1980—2007年区域性强浓雾日数呈明显的上升趋势,应归因于气溶胶粒子浓度升高。年代际比较,各区域区域性强浓雾日数都是20世纪90年代或21世纪最初10年最多,21世纪第2个10年最少;各区域区域性强浓雾出现日数年际变化大,最少的年份0—1 d,最多年份可超过10 d。(2)2016—2019年,各区域年均区域性强浓雾日数14—17 d,主要集中在仲秋到仲春;持续1 h的强浓雾日占比最高,持续3 h的样本是另一个峰值;淮河以北2个区域年均区域性强浓雾日数最多、且持续时间达到3 h及以上的区域性强浓雾占比最高。(3)淮河以北冬季区域性强浓雾日数与降水日数、降水量、相对湿度和08时气温均呈较为显著的正相关,而与风速和小风日数相关不显著;沿江地区冬季区域性强浓雾日数主要受地面风速影响;而江南冬季强浓雾日数与各地面因子均不存在明显相关。(4)以1月为例,各区域区域性强浓雾日数都与纬向环流指数呈正相关,沿淮淮北3个区域区域性强浓雾日数都与东亚槽位置呈正相关,而与东亚槽强度相关不明显。说明纬向型环流、东亚槽位置偏东有助于安徽沿淮淮北形成强浓雾。进一步分析发现,雾多的1月海平面气压中40°N以北的1030 hPa等值线位置偏东(如在120°E以东),近地层偏东风较强,地面湿度偏高。   相似文献   
2.
雾和霾都是低能见度天气,生成条件相似。利用安徽78个地面站逐时观测资料,基于雾、霾发生物理条件,建立了不同等级雾日和重度霾日的观测诊断方法,重建了不同等级雾和重度霾的时序资料。根据各站强浓雾发生的同步性,将安徽分为5个雾、霾分布特征不同的区域,探讨了各区域不同等级雾及重度霾出现时地面气象条件的异同。结果表明:(1)安徽省强浓雾主要是辐射雾。强浓雾、浓雾和大雾空间分布形势大体一致,淮河以北东、西部和江南都属于强浓雾高发区,但各地强浓雾的时、空分布特征和影响系统不同;重度霾有明显的北多、南少、山区最少的分布特征。(2)强浓雾年变化呈双峰型分布,峰值在1月和4月,日变化为单峰型,峰值在06时;而重度霾年变化为单峰型,峰值在1月,日变化为双峰型。(3)在强浓雾的高发时段(02—08时),强浓雾时降温幅度最大,比重度霾平均高1℃,风速显著偏低,超过75%的样本风速低于1.5 m/s,且无明显主导风向;而重度霾时,风速比雾时明显要大,个别区域有超过75%的样本风速大于1.5 m/s,且以西北风到东北风为主。说明重度霾能否演变为强浓雾的关键地面气象因子是风速、风向和降温幅度。   相似文献   
3.
基于东亚冬季风指数的安徽省冬季霾预测研究   总被引:2,自引:2,他引:0  
张浩  石春娥  杨元建 《气象》2019,45(3):407-414
东亚冬季风强度与中国中东部冬季霾日数的变化在年际尺度上密切相关,这为霾的短期气候预测提供了可能的物理因子。利用NCEP/NCAR再分析资料和安徽省1980-2016年气象观测数据,采用统计分析方法研究安徽省1月霾日数与同期不同东亚季风指数的关系,确定了安徽省不同区域冬季霾的主要季风指数预测因子,建立安徽省冬季霾的月尺度预测模型,并进行了验证。结果表明:(1)1月气候霾日数与6类东亚冬季风指数均呈反相关关系,其中淮河以北、江淮之间两个区东亚大槽强度指数与气候霾日数的相关系数在各项指数中最高,沿江江南为西伯利亚高压强度指数与气候霾日数的相关系数在各项指数中最高。(2)不同分区建立的1月气候霾日数的预测模型均通过了α=0. 01的显著性水平检,验证结果表明,霾日数预测等级与实况等级基本一致,各区均未出现预测错误的情况,表明模型具有较好的预测表现。(3)在安徽省冬季霾实际预测业务中,相比NCEPCFS2模式输出的环流预报场,ECMWFSYSTEM4模式输出环流预报场的预测效果更好。  相似文献   
4.
张浩  石春娥  杨军  倪婷 《大气科学》2021,45(6):1217-1231
雾对交通运输有不利影响,尤其是强浓雾。本文利用2019年1月上中旬在寿县国家气候观象台应用FM-100型雾滴谱仪测量的雾滴谱数据和常规气象观测数据,分析了不同强度雾的微物理特征,以及能见度与含水量、雾滴数浓度、相对湿度之间的关系,在此基础上建立了能见度参数化方案。结果表明:(1)随着雾的强度增强,雾中含水量显著增大,大雾、浓雾和强浓雾阶段含水量平均值分别为0.003 g m?3、0.01 g m?3和0.09 g m?3;当含水量大于0.02 g m?3,出现强浓雾的比例高达95%。(2)雾滴数浓度、雾滴尺度随着雾强度增强而增大,从大雾到浓雾,雾滴数浓度显著增加(增幅67%),而从浓雾到强浓雾,雾滴尺度显著增大,平均直径、平均有效半径分别增加62%、135%;当雾滴有效半径大于4.7 μm,出现强浓雾的比例高达95%。(3)强浓雾、浓雾、大雾雾滴数浓度谱分布均为双峰结构,谱分布整体偏向小粒子一端,强浓雾谱型为Deirmendjian分布,浓雾、大雾均为Junge分布;强浓雾的雾水质量浓度谱呈现多峰特征,最大峰值出现在21.5 μm处,浓雾雾水质量浓度谱为双峰分布,大雾为单峰型,最大峰值均出现在5 μm处。(4)含水量、数浓度与能见度均呈反相关关系,含水量对能见度的影响最为显著;分别采用全样本和分段方式建立了四种能见度参数化方案,评估检验结果表明,基于含水量的能见度分段拟合方案对能见度的估算效果最好。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号